Implementing PI Controller using Forward Difference Approximation

The PI controller in continuous time is given by

$\displaystyle u(t)$ $\displaystyle =K \left\{e(t)+\frac{1}{\tau_i}\int_0^t e(t)dt\right\}$ (5.29)

On taking the Laplace transform, we obtain


$\displaystyle u(t)$ $\displaystyle =K\left\{1+\frac 1{\tau_i s}\right\}e(t)$ (5.30)

By mapping controller given in equation 5.30 to the discrete time domain using forward difference formula, we get


$\displaystyle u(n)$ $\displaystyle =K\left\{1+\frac{T_s}{\tau_i}\frac{1}{z-1}\right\}e(n)$ (5.31)

On cross multiplying, we get


$\displaystyle (z-1)u(n)$ $\displaystyle =K\left\{(z-1)+\frac{T_s}{\tau_i}\right\}e(n)$ (5.32)

We divide by $ z$ and then by using shifting theorem, we get


$\displaystyle u(n)-u(n-1)$ $\displaystyle =K\left\{e(n)-e(n-1)+\frac{T_s}{\tau_i}e(n-1)\right\}$ (5.33)

The PI controller is usually written as


$\displaystyle u(n)$ $\displaystyle =u(n-1)+s_0 e(n)+s_1e(n-1)$ (5.34)

where


$\displaystyle s_0$ $\displaystyle = K$ (5.35)
$\displaystyle s_1$ $\displaystyle =K\left(-1+\frac{T_s}{\tau_i}\right)$ (5.36)



Subsections
rokade 2017-04-23