Implementing PI Controller using Backward Difference Approximation

The PI controller in continuous time is given by

$\displaystyle u(t)$ $\displaystyle =K \left\{e(t)+\frac{1}{\tau_i}\int_0^t e(t)dt\right\}$ (5.21)

On taking the Laplace transform, we obtain


$\displaystyle u(t)$ $\displaystyle =K\left\{1+\frac 1{\tau_i s}\right\}e(t)$ (5.22)

By mapping controller given in equation 5.22 to the discrete time domain using Backward difference approximation:


$\displaystyle u(n)$ $\displaystyle =K\left\{1+\frac{T_s}{\tau_i}\frac{z}{z-1}\right\}e(n)$ (5.23)

On cross multiplying, we get


$\displaystyle (z-1)u(n)$ $\displaystyle =K\left\{(z-1)+\frac{T_s}{\tau_i}(z)\right\}e(n)$ (5.24)

We divide by $ z$ and then by using shifting theorem, we obtain


$\displaystyle u(n)-u(n-1)$ $\displaystyle =K\left\{e(n)-e(n-1)+\frac{T_s}{\tau_i}e(n)\right\}$ (5.25)

The PI controller is usually written as


$\displaystyle u(n)$ $\displaystyle =u(n-1)+s_0 e(n)+s_1e(n-1)$ (5.26)

where


$\displaystyle s_0$ $\displaystyle =K\left(1+\frac{T_s}{\tau_i}\right)$ (5.27)
$\displaystyle s_1$ $\displaystyle =-K$ (5.28)



Subsections
rokade 2017-04-23