Figure 9.11:
Xcos diagram for PI controller
|
 |
The PI Controller in continuous time is given by
![$\displaystyle u(t) = K \left[e(t) + \frac 1{\tau_i}\int_0^t e(t)dt\right]$](img411.png) |
(9.9) |
On taking Laplace transform, we obtain
By mapping equation 9.10 to discrete time interval using Backward Difference Approximation, we get
![$\displaystyle u(n) = K \left[1 + \frac{T_s}{\tau_i} \frac{z}{z-1}\right]e(n)$](img413.png) |
(9.11) |
On cross multiplication, we obtain
![$\displaystyle (z-1)\times u(n) = K \left[(z-1) + \frac{T_s}{\tau_i} (z)\right]e(n)$](img414.png) |
(9.12) |
We divide by z, and using the shifting theorem, we obtain
![$\displaystyle u(n) - u(n-1) = K \left[e(n) - e(n-1) + \frac{T_s}{\tau_i} e(n)\right]$](img415.png) |
(9.13) |
The PI Controller is usually written as
 |
(9.14) |
where,
rokade
2017-04-23