PI Controller

Figure 9.11: Xcos diagram for PI controller
Image Pi_dist_xcos

The PI Controller in continuous time is given by

$\displaystyle u(t) = K \left[e(t) + \frac 1{\tau_i}\int_0^t e(t)dt\right]$ (9.9)

On taking Laplace transform, we obtain

$\displaystyle u(s) = K \left[1 + \frac 1{\tau_i s}\right]e(s)$ (9.10)

By mapping equation 9.10 to discrete time interval using Backward Difference Approximation, we get

$\displaystyle u(n) = K \left[1 + \frac{T_s}{\tau_i} \frac{z}{z-1}\right]e(n)$ (9.11)

On cross multiplication, we obtain

$\displaystyle (z-1)\times u(n) = K \left[(z-1) + \frac{T_s}{\tau_i} (z)\right]e(n)$ (9.12)

We divide by z, and using the shifting theorem, we obtain

$\displaystyle u(n) - u(n-1) = K \left[e(n) - e(n-1) + \frac{T_s}{\tau_i} e(n)\right]$ (9.13)

The PI Controller is usually written as

$\displaystyle u(n) = u(n-1) + s_0 e(n) + s_1 e(n-1)$ (9.14)

where,

$\displaystyle s_0$ $\displaystyle =K\left(1+\frac{T_s}{\tau_i}\right)$    
$\displaystyle s_1$ $\displaystyle =-K$    

rokade 2017-04-23